安装在机器人上的光学扫描仪通常用于质量检查,例如验证片状结构的尺寸规格。覆盖路径规划(CPP)显着影响机器人质量检验的准确性和效率。传统的CPP战略专注于最小化机器人的观点次数或在完全覆盖检查的条件下。在自由形状表面检查中较少考虑收集扫描数据时的测量不确定度。为了解决这个问题,提出了一种具有最佳观点采样策略的新型CPP方法,以将键测量点(MPS)的测量不确定性纳入自由形状表面检查。首先,基于MP的公差规范计算可行的测量不确定性范围。考虑测量不确定度和MPS的可见性,生成初始可行性视点集。然后,构建检查成本函数以评估所选视点的视野(FOV)的选定视点的数量和平均测量不确定性。之后,提出了一种增强的快速探索随机树(RRT *)算法,用于使用检查成本函数和CPP优化的观点采样。已经进行了案例研究,包括模拟试验和检查实验,以评估所提出的方法的有效性。结果表明,与基准法相比,关键MPS的扫描精度显着提高。
translated by 谷歌翻译
在这项工作中,我们通过利用3D Suite Blender生产具有6D姿势的合成RGBD图像数据集来提出数据生成管道。提出的管道可以有效地生成大量的照片现实的RGBD图像,以了解感兴趣的对象。此外,引入了域随机化技术的集合来弥合真实数据和合成数据之间的差距。此外,我们通过整合对象检测器Yolo-V4微型和6D姿势估计算法PVN3D来开发实时的两阶段6D姿势估计方法,用于时间敏感的机器人应用。借助提出的数据生成管道,我们的姿势估计方法可以仅使用没有任何预训练模型的合成数据从头开始训练。在LineMod数据集评估时,与最先进的方法相比,所得网络显示出竞争性能。我们还证明了在机器人实验中提出的方法,在不同的照明条件下从混乱的背景中抓住家用物体。
translated by 谷歌翻译
域的概括(DG)旨在学习一个对源域的模型,以很好地概括看不见的目标域。尽管它取得了巨大的成功,但大多数现有方法都需要用于源域中所有培训样本的标签信息,这在现实世界中既耗时又昂贵。在本文中,我们求助于解决半监督域的概括(SSDG)任务,其中每个源域中都有一些标签信息。为了解决任务,我们首先分析多域学习的理论,该理论强调了1)减轻域间隙的影响和2)利用所有样品训练模型可以有效地减少每个源域中的概括误差,因此提高伪标签的质量。根据分析,我们提出了Multimatch,即将FixMatch扩展到多任务学习框架,从而为SSDG生成高质量的伪标签。具体来说,我们将每个培训域视为一个任务(即本地任务),并将所有培训域(即全球任务)组合在一起,以训练看不见的测试域的额外任务。在多任务框架中,我们为每个任务使用独立的BN和分类器,这可以有效地减轻伪标记期间不同领域的干扰。同样,共享框架中的大多数参数,可以通过所有培训样本进行培训。此外,为了进一步提高伪标签的准确性和模型的概括,我们分别在培训和测试过程中分别融合了全球任务和本地任务的预测。一系列实验验证了所提出的方法的有效性,并且在几个基准DG数据集上优于现有的半监督方法和SSDG方法。
translated by 谷歌翻译
深度强化学习(DRL)是一种有前途的方法,可以通过与环境的互动来学习政策来解决复杂的控制任务。但是,对DRL政策的培训需要大量的培训经验,这使得直接了解物理系统的政策是不切实际的。 SIM到运行的方法可以利用模拟来验证DRL政策,然后将其部署在现实世界中。不幸的是,经过验证的政策的直接现实部署通常由于不同的动态(称为现实差距)而遭受性能恶化。最近的SIM到现实方法,例如域随机化和域的适应性,重点是改善预审预告剂的鲁棒性。然而,经过模拟训练的策略通常需要使用现实世界中的数据来调整以达到最佳性能,这是由于现实世界样本的高成本而具有挑战性的。这项工作提出了一个分布式的云边缘建筑,以实时培训现实世界中的DRL代理。在体系结构中,推理和训练被分配到边缘和云,将实时控制循环与计算昂贵的训练回路分开。为了克服现实差距,我们的体系结构利用了SIM到现实的转移策略,以继续在物理系统上训练模拟预言的代理。我们证明了其在物理倒置螺旋控制系统上的适用性,分析了关键参数。现实世界实验表明,我们的体系结构可以使验证的DRL代理能够始终如一,有效地看不见动态。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译